

Python 3 Beginner

Cheat Sheet

By Jeremy Grifski

1

Copyright © 2019 The Renegade Coder. All Rights Reserved.

Variables

Variables can be created and stored as

follows: name = expression.

 num = 11 # stores 11

 word = "Hello" # stores "Hello"

 logic = True # stores True

 my_list = [2, 3, 4] # stores [2, 3, 4]

 my_tuple = (5, 2) # stores (5, 2)

 my_dict = {} # stores {}

 my_set = {4, 5} # stores {4, 5}

Arithmetic

Arithmetic expressions can be written using

these operators: +, -, /, //, *, **, and %.

 add = 3 + 7 # stores sum of 10

 sub = 5 - 3 # stores difference of 2

 mul = 3 * 3 # stores product of 9

 div = 5 / 2 # stores quotient of 2.5

 idiv = 5 // 2 # stores quotient of 2

 exp = 2 ** 4 # stores product of 16

 rem = 7 % 2 # stores remainder of 1

 paren = (3 + 2) / 5 # stores 1.0

Boolean Algebra

Boolean algebra is accomplished using the

following keywords: and, or, and not.

 is_cold = True # stores True

 is_wet = True # stores True

 is_not_cold = not is_cold # stores False

 am_sad = is_cold and is_wet # stores True

 am_mad = is_cold or is_wet # stores True

Relational Operators

Numbers can be compared using the

relational operators: >, >=, ==, <=, and <.

 less = 2 < 4 # stores True

 less_equals = 3 <= 3 # stores True

 equals = 4 == 7 # stores False

 greater_equals = 5 >= 2 # stores True

 greater = -4 > 5 # stores False

Strings

Strings are collections of characters that

can be created using quotation marks.

 name = "Jeremy" # stores "Jeremy"

 size = len(name) # stores length of 6

 twice = name * 2 # stores "JeremyJeremy"

 concat = name + "'s" # stores "Jeremy's"

 check = "e" in name # stores True

 first = name[0] # stores "J"

 last = name[-1] # stores "y"

 subset = name[1:4] # stores "ere"

 lower = name.lower() # stores "jeremy"

 upper = name.upper() # stores "JEREMY"

Dictionaries

Dictionaries are collections of key, value

mappings and are created using braces.

 my_map = {"x": 2} # stores {"x": 2}

 value = my_map["x"] # stores 2

 my_map["y"] = 5 # adds "y": 5 to dict

 list(my_map.keys()) # returns [x, y]

 list(my_map.values()) # returns [2, 5]

2

Copyright © 2019 The Renegade Coder. All Rights Reserved.

Lists

Lists are mutable collections which can be

created using square brackets.

 items = [1, 2, 3] # stores [1, 2, 3]

 length = len(items) # stores 3

 begin = items[0] # stores 1

 end = items[-1] # stores 3

 section = items[0:1] # stores [1]

 exists = 2 in items # stores True

 items.append(4) # adds 4 to end of list

 items.extend([5, 6]) # appends 5 and 6

 items.reverse() # flips order of list

 items.clear() # empties list

Conditionals

In Python, conditions are written using the

if/elif/else syntax.

 # prints "Nice car!"

 cars = ["Tesla", "Ford", "Toyota"]

 if "Toyota" in cars:

 print("Nice car!")

 elif "Audi" in cars:

 print("Not bad!")

 else:

 print("Mistakes were made.")

In addition, if statements can be nested.

 # removes "Toyota" from cars

 # prints "We won't be needing that!"

 if "Toyota" in cars:

 if "Tesla" in cars:

 cars.remove("Toyota")

 print("We won't be needing that!")

Loops

In order to repeat a section of code, Python

includes both while and for loops.

prints "h\ni\n"

greet = "hi"

index = 0

while index < len(greet):

 print(greet[index])

 index += 1

same code, but with a for loop

for index in range(len(greet)):

 print(greet[index])

same code, but with a for each loop

for char in greet:

 print(char)

Comprehensions

Finally, lists and dictionaries can be

generated using comprehensions.

creates list from 0 to 49

nums = [x for x in range(50)]

creates list of all nums doubled

doubles = [x * 2 for x in nums]

creates list of evens from nums

evens = [x for x in nums if x % 2 == 0]

creates a mapping of nums to evens

map = {x: y for x, y in zip(nums, evens)}

