<Eheenegade Cxde I/>

CCCCCCCCC . ASK QUESTIONS LATER

Python 3 Beginner
Cheat Sheet

By Jeremy Grifski

Variables

Variables can be created and stored as

follows: name = expression.

num = 11 # stores 11
word = "Hello" # stores "Hello"

logic = True # stores True

my list = [2, 3, 4] # stores [2, 3, 4]
my_tuple = (5, 2) # stores (5, 2)
my_dict = {} # stores {}

my set = {4, 5} # stores {4, 5}

Arithmetic

Arithmetic expressions can be written using

these operators: +, -, /, //, *, **, and %.

add = 3 + 7 # stores sum of 10

sub =5 - 3 # stores difference of 2
mul = 3 * 3 # stores product of 9
div = 5 / 2 # stores quotient of 2.5

idiv = 5 // 2 # stores quotient of 2
exp = 2 *¥* 4 # stores product of 16

rem =7 % 2 # stores remainder of 1

paren = (3 +2) / 5 # stores 1.0

Boolean Algebra

Boolean algebra is accomplished using the
following keywords: and, or, and not.

Relational Operators

Numbers can be compared using the

relational operators: >, >=, ==, <=, and <.

less = 2 < 4 # stores True
less_equals = 3 <= 3 # stores True
equals = 4 == 7 # stores False
greater_equals = 5 >= 2 # stores True

greater = -4 > 5 # stores False

Strings
Strings are collections of characters that
can be created using quotation marks.

name = "Jeremy" # stores "Jeremy"

size = len(name) # stores Length of 6

'

twice = name * 2 # stores "JeremyJeremy'

concat = name + S # stores "Jeremy's"

check = "e" in name # stores True

first = name[@] # stores "J"

"won

last = name[-1] # stores "y

" "

subset = name[1:4] # stores "ere

lower = name.lower() # stores "jeremy"

stores "JEREMY"

upper = name.upper()

is_cold = True # stores True
is_wet = True # stores True
is_not_cold = not is_cold # stores False

am_sad = is_cold and is_wet # stores True

am_mad = is_cold or is_wet # stores True

Dictionaries

Dictionaries are collections of key, value
mappings and are created using braces.

my_map = {"x": 2} # stores {"x": 2}
value = my_map["x"] # stores 2

my _map["y"] = 5 # adds "y": 5 to dict
list(my_map.keys()) # returns [x, y]

list(my_map.values()) # returns [2, 5]

Copyright © 2019 The Renegade Coder. All Rights Reserved.

Lists

Lists are mutable collections which can be
created using square brackets.

Loops

In order to repeat a section of code, Python
includes both while and for loops.

items = [1, 2, 3] # stores [1, 2, 3]
length = len(items) # stores 3

begin = items[@] # stores 1

end = items[-1] # stores 3

section = items[@:1] # stores [1]
exists = 2 in items # stores True
items.append(4) # adds 4 to end of List
items.extend([5, 6]) # appends 5 and 6
items.reverse() # flips order of List

items.clear() # empties List

Conditionals

In Python, conditions are written using the
if/elif/else syntax.

prints "h\ni\n"

greet = "hi"

index = @

while index < len(greet):
print(greet[index])

index += 1

same code, but with a for Loop
for index in range(len(greet)):

print(greet[index])

same code, but with a for each Loop
for char in greet:

print(char)

prints "Nice car!"”
cars = ["Tesla", "Ford", "Toyota"]
if "Toyota" in cars:
print("Nice car!")
elif "Audi" in cars:
print("Not bad!")
else:

print("Mistakes were made.")

Comprehensions

Finally, lists and dictionaries can be

generated using comprehensions.

In addition, if statements can be nested.

removes "Toyota" from cars
prints "We won't be needing that!"
if "Toyota™ in cars:

if "Tesla" in cars:

cars.remove("Toyota")

creates List from © to 49

nums = [x for x in range(590)]

creates List of all nums doubled

doubles = [x * 2 for x in nums]

creates List of evens from nums

evens = [x for x in nums if x % 2 == 0]

creates a mapping of nums to evens

map = {x: y for x, y in zip(nums, evens)}

print("We won't be needing that!"

Copyright © 2019 The Renegade Coder. All Rights Reserved.

