
• In Lamport’s system of logical clocks if a → b then C(a) < C(b)

• However the opposite is not true

– if C(a) < C(b), it is not necessarily true that a → b (see example)

– Vector Clocks addresses this limitation

Lamport’s Clock limitations

e11 e12

(1) (2)

e21

(1)

e22

(2)

e31
e32

(1) (2)

C(e11) < C(e22) and e11 → e22

but

C(e11) < C(e32) and 3211 ee →/

Example: Totally Ordered

Multicasting

• There are multiple replicas of bank account

database.

• We need to guarantee the update operations to all

the replicas following the same order.

Vector clocks

• The timestamp Ci of an event a is a vector of

length n

– Ci[i] is Pi’s own logical clock

– Ci[j] is Pi’s best guess of logical time at Pj’s

• Implementation rules:

– events a and b are on same process: Ci[i] = Ci[i] + d

– a is the sending and b the receiving of a message m:

∀k ≠ j, Cj[k] = max(Cj[k], tm[k]), and

Cj[j] = Cj[j] + d

Vector clock: timestamp comparison

• Vector timestamps can be compared in the

obvious way:

– ta = tb iff ∀i, ta[i] = tb[i]

– ta ≠ tb iff ∃i, ta[i] ≠ tb[i]

– ta ≤ tb iff ∀i, ta[i] ≤ tb[i]

– ta < tb iff (ta ≤ tb ∧ ta ≠ tb)

• Important observation:

– ∀i, ∀j : Ci[i] ≥ Cj[i]

Causally related events

• In a system with vector clocks:

– a → b iff ta < tb

• Practical consequence: by comparing vector

timestamps we can tell if two events are causally

related:

– ta < tb ⇒ a → b

Example

e11 e12 e13

e21

e31 e32

e22 e23 e24

(, ,) (, ,) (, ,)

(, ,) (, ,) (, ,) (, ,)

(, ,) (, ,)

P1

P2

P3

Example

e11 e12 e13

e21

e31 e32

e22 e23 e24

(1,0,0) (2,0,0) (3,4,1)

(0,1,0) (2,2,0) (2,3,1) (2,4,1)

(0,0,1) (0,0,2)

P1

P2

P3

Using Happens-Before for Data Race

Detection

• Data race:

– Simultaneous shared memory accesses

– At least one of them is write

• Detection algorithm:

– Record memory accesses and happens-before relation

at runtime based on the synchronization events

– If no order between two shared memory accesses in two

processes/threads, they may incur potential data races.

Mutual exclusion in distributed

systems

• All the solutions to the mutual exclusion problem studied

assume presence of shared memory

– Ex. Semaphores, monitors, etc. all rely on shared variables

• The mutual exclusion problem is complicated in

distributed system by

– lack of shared memory

– lack of a common physical clock

– unpredictable communication delays

• Several algorithms have been proposed to solve this

problem with different performance trade-offs

– Token-based solutions

– Permission-based solutions

A centralized algorithm

• A simple solution to the distributed mutual

exclusion problem:

– a single control site in charge of granting permissions

to access the resource

– require 3 messages

– time to grant a new permission is 2T (T = average

message delay)

• This solution has drawbacks:

– existence of a single point of failure

– control site is a bottleneck

Lamport’s Algorithm

• Assumption: messages delivered in FIFO order
(no loss messages)

• Requesting the CS
– Pi sends message REQUEST(t

i
, i) to other processes, then

enqueues the request in its own request_queuei

– when Pj receives a request from Pi, it returns a timestamped
REPLY to Pi and places the request in request_queuej

– request_queue is ordered according to (t
i
, i)

• A process Pi executes the CS only when:
– Pi has received a message with timestamp larger than ti from

all other processes

– its own request in the first of the request_queuei

Lamport’s Algorithm (2)

• Releasing the critical section:

– when done, a process remove its request from the queue and sends a

timestamped RELEASE message to all

– upon receiving a RELEASE message from Pi, a process removes

Pi’s request from the request queue

Lamport’s Algorithm Example
(2,1)

(1,2)

P1

P2

P3

P1

P2

P3

(1,2) (2,1)

(1,2) (2,1)

(1,2) (2,1)

(1,2)

(2,1)

(2,1)

(2,1)

P2 enters

CS

P2 leaves CS

P1 enters

CS

