
• In Lamport’s system of logical clocks if a → b then C(a) < C(b)

• However the opposite is not true

– if  C(a) < C(b), it is not necessarily true that a → b (see example)

– Vector Clocks addresses this limitation
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Example: Totally Ordered 

Multicasting

• There are multiple replicas of bank account 

database.

• We need to guarantee the update operations to all 

the replicas following the same order.



Vector clocks

• The timestamp Ci of an event a is a vector of 

length n

– Ci[i] is Pi’s own logical clock

– Ci[j] is Pi’s best guess of logical time at Pj’s

• Implementation rules:

– events a and b are on same process: Ci[i] = Ci[i]  + d

– a is the sending and b the receiving of a message m: 

∀k ≠ j, Cj[k] = max(Cj[k], tm[k]), and

Cj[j] = Cj[j] + d



Vector clock: timestamp comparison

• Vector timestamps can be compared in the 

obvious way:

– ta = tb iff    ∀i,  ta[i] = tb[i]

– ta ≠ tb iff    ∃i,   ta[i] ≠ tb[i]

– ta ≤ tb iff    ∀i,  ta[i] ≤ tb[i]

– ta < tb iff    ( ta ≤ tb ∧ ta ≠ tb )

• Important observation:

– ∀i, ∀j : Ci[i]  ≥ Cj[i] 



Causally related events

• In a system with vector clocks:

– a → b iff    ta < tb

• Practical consequence: by comparing vector 

timestamps we can tell if two events are causally 

related:

– ta < tb ⇒ a → b



Example
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Using Happens-Before for Data Race 

Detection

• Data race:

– Simultaneous shared memory accesses

– At least one of them is write

• Detection algorithm:

– Record memory accesses and happens-before relation 

at runtime based on the synchronization events

– If no order between two shared memory accesses in two  

processes/threads, they may incur potential data races.



Mutual exclusion in distributed 

systems

• All the solutions to the mutual exclusion problem studied 

assume presence of shared memory

– Ex. Semaphores, monitors, etc. all rely on shared variables

• The mutual exclusion problem is complicated in 

distributed system by 

– lack of shared memory

– lack of a common physical clock

– unpredictable communication delays

• Several algorithms have been proposed to solve this 

problem with different performance trade-offs

– Token-based solutions

– Permission-based solutions



A centralized algorithm

• A simple solution to the distributed mutual 

exclusion problem:

– a single control site in charge of granting permissions 

to access the resource

– require 3 messages

– time to grant a new permission is 2T (T = average 

message delay) 

• This solution has drawbacks:

– existence of a single point of failure 

– control site is a bottleneck



Lamport’s Algorithm

• Assumption: messages delivered in FIFO order 
(no loss messages)

• Requesting the CS
– Pi sends message REQUEST(t

i
, i) to other processes, then 

enqueues the request in its own request_queuei

– when Pj receives a request from Pi, it returns a timestamped 
REPLY to Pi and places the request in request_queuej

– request_queue is ordered according to (t
i
, i)

• A process Pi executes the CS only when:
– Pi has received a message with timestamp larger than ti from 

all other processes

– its own request in the first of the request_queuei



Lamport’s Algorithm (2)

• Releasing the critical section:

– when done, a process remove its request from the queue and sends a 

timestamped RELEASE message to all

– upon receiving a RELEASE message from Pi, a process removes 

Pi’s request from the request queue
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