Lamport’s Clock limitations

e In Lamport’s system of logical clocks if a — b then C(a) < C(b)

 However the opposite 1s not true

— if C(a) < C(b), it is not necessarily true that a — b (see example)
— Vector Clocks addresses this limitation

€ €

°
(D) 2
C(e;;) < C(ey,) and e,y = €5, €21 €22
but ¢

(1) (2)
31
@ L
(1) 2)




Example: Totally Ordered
Multicasting

e There are multiple replicas of bank account
database.

 We need to guarantee the update operations to all
the replicas following the same order.



Vector clocks

* The timestamp C; of an event a 1s a vector of
length n
— Cji] 1s P;s own logical clock
— Clj]11s P;’s best guess of logical time at P;’s
e Implementation rules:
— events a and b are on same process: C/[i] = C[i] +d

— a 1s the sending and b the receiving of a message m:
Vk+#], Cj[k] = max(Cj[k], t [k]), and

Cljl=Cljl +d



Vector clock: timestamp comparison

e Vector timestamps can be compared 1n the
obvious way:
— =t iff Vi, ] = ]
— @ iff 30 ] # P[]
— <t iff Vi i) < [
—te<t? iff (<t A rELP)

e Important observation:
- Vi, Vj : Cli] 2 C[i]



Causally related events

e In a system with vector clocks:
—a—b iff <
e Practical consequence: by comparing vector
timestamps we can tell if two events are causally
related:
— U<t > a—>b



b D) b
L >
€11 €12 e;
C, (,
L L >
€21 €24

v



P,

Example

(1,0,0) (2,0,0) (3,41, 1)

L >
€1 € e;
(0,1,0) (2,2,0) (2,3,1) (2,4,1)

@ @ @ @ >
€2; €2 €73 €24
(0,0,1) (0,0,2)
@ L >

€31 €3



Using Happens-Before tor Data Race
Detection

e Data race:
— Simultaneous shared memory accesses
— At least one of them 1s write

e Detection algorithm:

— Record memory accesses and happens-before relation
at runtime based on the synchronization events

— If no order between two shared memory accesses 1in two
processes/threads, they may incur potential data races.



Mutual exclusion 1n distributed
systems

e All the solutions to the mutual exclusion problem studied
assume presence of shared memory

— Ex. Semaphores, monitors, etc. all rely on shared variables

e The mutual exclusion problem is complicated in
distributed system by
— lack of shared memory
— lack of a common physical clock

— unpredictable communication delays

e Several algorithms have been proposed to solve this
problem with different performance trade-offs
— Token-based solutions

— Permission-based solutions



A centralized algorithm

e A simple solution to the distributed mutual
exclusion problem:

— a single control site in charge of granting permissions
to access the resource

— require 3 messages

— time to grant a new permission 1s 27" (T’ = average
message delay)

e This solution has drawbacks:
— existence of a single point of failure

— control site 1s a bottleneck



Lamport’ s Algorithm

e Assumption: messages delivered in FIFO order
(no loss messages)

e Requesting the CS

— P, sends message REQUEST(¢,, i) to other processes, then
enqueues the request 1n 1ts own request_queue;

— when P;receives a request from P, it returns a timestamped
REPLY to P; and places the request in request_queue,

— request_queue 1s ordered according to (¢, i)

* A process P, executes the CS only when:

— P, has received a message with timestamp larger than 7, from
all other processes

— 1ts own request in the first of the request_queue;



Lamport’ s Algorithm (2)

* Releasing the critical section:

— when done, a process remove its request from the queue and sends a
timestamped RELEASE message to all

— upon receiving a RELEASE message from P, a process removes
P. s request from the request queue

l



Lamport’ s Algorithm Example

2.1

P, enters

v

A\

N . (1,2))2,1)
PZ \ P] - /' 4 >
\ A ) [@leD
P3 ’ 4 /

12 P,

v

v

(1,2)[(2,1)
P, leaves CS
2.1

2.1

»
»

4 > P, enters
2,1)

v



