
Definition of a Distributed System
• A distributed system is:

A collection of independent
computers that appears to its

users as a single coherent
system.

Distributed System Organization

• Example of middleware-based organization of a distributed system.
• The thickness of the middleware layer can range from extremely thin to

very thick depending on the degree of integration of a particular system

1.1

Hardware Concepts

1.6

Different basic organizations and memories in distributed computer
systems

Group Discussion
• Topics to discuss:

– Name one or two Distributed Systems based on your impression or
past experiences

– What are good things about these systems?
– Anything in these systems demands improvement?

• Format:
– 4-5 students form a group
– Feel free to move around
– Discuss for 2-3 minutes
– One representative from each group will talk about your ideas

Issues of Distributed Systems

• Distributed systems introduce a whole new set of
design issues w.r.t traditional system design

• Scalability
• Transparency
• On multi-computers:

– Lack of common address space
– Lack of common clock

Scalability Problems

Examples of scalability limitations.

Concept Example

Centralized services A single server for all users

Centralized data A single on-line telephone book

Centralized algorithms Doing routing based on complete information

Transparency in a Distributed System

Different forms of transparency in a distributed system.

Transparency Description

Access Hide differences in data representation and how a resource
is accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location
while in use

Replication Hide that there may be multiple copies of a resource

Concurrency Hide that a resource may be shared by several competitive
users

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or on disk

Concept of a process

• In the context of this course a process is a program
whose execution is in progress.

• States of a process: running, ready, blocked

Ready Running

Blocked

Submit Completion

8

Concurrent processes

• In a multiprocessor system two or more processes can be in
execution at the same time
– physical concurrency - as opposed to logical concurrency achieved by

interleaving process execution

• Concurrent processes interaction:
– shared variables
– message passing

• If no interaction, their execution is functionally the same as
their serial execution

• Group discussion:
– Real life analogies? (Focus on concurrency, interaction, shared

resources, any potential issues?) 9

The critical section problem

• A critical section is a code segment of a concurrent
process in which a shared resource is accessed

• Concurrent access to a shared variable is
potentially dangerous
– example: if a=0, what is the result of the command

a=a+1 executed simultaneously by processes A and B?
– a common solution is the mutual exclusion i.e.

serialization of accesses

10

Early Solutions

• Busy Waiting
– Wastes cycles

• Disabling Interrupts
– Only applicable to uniprocessor

• A special test-and-set instruction

11

Example of busy waiting on a lock (1/2)

• One could think of
using a variable as a
flag to be checked upon
entering a critical
section ...

• … but access to the
lock itself is a critical
section!

Shared integer lock = 0;
Process i

.

.
while lock == 1;
lock = 1;
execute CS;
lock = 0;
.

Process A

.

.
while lock == 1;
lock = 1;
.
.

Process B

.

.
while lock == 1;
lock = 1;
.
.

Possible race
condition

12

Example of busy waiting on a lock (2/2)

• The correct implementation uses a test-and-set
instruction to avoid race conditions

Correct lock implementation

Process A

Shared integer lock = 0;
.
.
While(test-and-set(lock) ==1)

;
.
.

int test-and-set (int a) {
int rv = a;
a = 1;
return rv;

}

Semantics of test-and-set instruction

13

