
Locks: pros and cons 

•  Pros: 

–  simple and fast 

–  ubiquitous: every processor has a test-and-set or 

equivalent operation  

•  Cons: 

–  busy waiting is wasteful of resources (CPU cycles, 

memory bandwidth) 

1 



Semaphores - definition 

•  Proposed by Dijkstra, it was the first high level 

constructs used to synchronize concurrent processes. 

•  A semaphore S is an integer variable on which two 

atomic operations are defined, P(S) and V(S), and 

with an associated queue. 

•  P and V semantic: 

P(S): if S ≥ 1 then S := S - 1

      else <block and enqueue the process>;

V(S): if <some process is blocked on the queue> then

         <unblock a process>

      else S := S + 1;



Semaphores - properties  

•  The P operation may block a process, but V does not 

•  Two type of semaphores 

–  binary: initial value  is 1 

–  resource counting: any initial value 

•  P and V are atomic operations 

P(S): if S ≥ 1 then S := S - 1

      else <block and enqueue the process>;

V(S): if <some process is blocked on the queue> then

         <unblock a process>

      else S := S + 1;

3 



Example of use 

Shared var mutex: semaphore = 1; 

 

Process i 

 

 begin 

 . 

 .   

 P(mutex); 

 execute CS; 

 V(mutex); 

 . 

 . 

 End; 

 

4 
•  Mutex vs. Lock? 



Other synchronization problems 

•  Semaphore can be used in other synchronization 

problems besides Mutual Exclusion 

•  The Producer-Consumer problem 

–  a finite buffer pool is used to exchange messages 

between producer and consumer processes 

•  The Readers-Writers Problem 

–  reader and writer processes accessing the same file 

•  The Dining Philosophers Problem 

–  five philosophers competing for forks 



Producer-Consumer: solution #1 

•  Semaphore mutex ensures mutual exclusion in accessing the pool, however 
solution shown is NOT correct because variable count is not protected (for 
example two producers could enter when count = N-1) 

•  Would it work if switching the while loops and P(mutex)’s? 

Process consumer 

. 

. 

while count = 0 ; 

      

P(mutex) 

count = count - 1 

read(tail_ptr) 

tail_ptr = (tail_ptr + 1) mod N 

V(mutex) 

. 

. 

Process producer 

. 

. 

while count = N ; 

      

P(mutex) 

count = count + 1 

write(head_ptr) 

head_ptr = (head_ptr + 1) mod N 

V(mutex) 

. 

. 



Would this work? 

•  Possible Deadlocks! 

Process consumer 

. 

. 

P(mutex) 

 

while count = 0 ; 

count = count - 1 

read(tail_ptr) 

tail_ptr = (tail_ptr + 1) mod N 

V(mutex) 

. 

. 

Process producer 

. 

. 

P(mutex) 

 

while count = N ; 

count = count + 1 

write(head_ptr) 

head_ptr = (head_ptr + 1) mod N 

V(mutex) 

. 

. 



Producer-Consumer: Correct Solution 

•  Initialize:  count = 0; sem_c = 0;  sem_p = N ;  

•  Invariants:  count == sem_c ;   sem_c + sem_p = N  

Process consumer 

. 

. 

P(mutex)  

if count = 0 

     then V(mutex); P(sem_c); P(mutex)   
else  

     P(sem_c) ;  

count = count - 1 

read(tail_ptr) 

tail_ptr = (tail_ptr + 1) mod N 

V(sem_p)  

V(mutex) 

. 

. 

Process producer 

. 

. 

P(mutex)  

if count = N 

     then V(mutex); P(sem_p); P(mutex)  

else  

      P(sem_p) ;   
count = count + 1 

write(head_ptr) 

head_ptr = (head_ptr + 1) mod N 

V(sem_c) 

V(mutex) 

. 

. 

•  Really Correct? 



Producer-Consumer:  another solution ?? 

•  Initialize:  count = 0; sem_c = 0;  sem_p = N ;  

•  Assertions  count == sem_c ;   sem_c + sem_p = N   

•  Does not work – DEADLOCK !! 

•  How can we solve the problem? 

Process consumer 

. 

. 

P(mutex)  

P(sem_c)  
count = count - 1 

read(tail_ptr) 

tail_ptr = (tail_ptr + 1) mod N 

V(sem_p)  

V(mutex) 

. 

. 

Process producer 

. 

. 

P(mutex)  

P(sem_p)   
count = count + 1 

write(head_ptr) 

head_ptr = (head_ptr + 1) mod N 

V(sem_c) 

V(mutex) 

. 

. 



Quiz 
•  Using an exchange/swap instruction (atomic) to 

implement lock and unlock operations. 

•  Assuming the following semantics of a exchange/

swap instruction. 

 
void swap (int *a, int *b) 

{ 

 int tmp; 

 tmp = *a; 

 *a = *b; 

 *b = tmp; 

} 


