Reader-Writers problem

* The resource 1s a file shared by multiple reader and writer
processes

* The synchronization constraints are:

— readers should be able to concurrently access the file
— only one writer at a time can access the file

— readers and writers exclude each others

e Variants:
— reader’s priority: arriving readers have priority over waiting writers

— writer’s priority: writers have priority over waiting readers

Simple Readers-Writers solution

* The following scheme 1s very simple but
e ... does not allow concurrent reader access

Procedure reader
P(mutex)
<read file>

V(mutex)

Procedure writer
P(mutex)
<write file>

V{(mutex)

Readers-Writers solution with
concurrent reader access

Procedure reader

P(reader: mutex)
if readers =0 then
readers = readers + 1
P(writer: mutex)
clse
readers = readers + 1
V(reader. mutex)

<read file>

P(reader - mutex)

readers = readers -1

if readers == 0 then V(writer mutex)
Vireader mutex)

Procedure writer

P(writer: mutex)
<write file>
Vwriter- mutex)

This solution 1s NOT ALWAYS
with reader’s priority. WHY?

Readers-Writers with reader’s

priority

Procedure reader

P(reader mutex)
if readers = 0 then
readers = readers + 1
P(writer mutex)
else
readers = readers + 1
V(reader mutex)

<read file>

P(reader mutex)

readers = readers - 1

if readers == 0 then V(writer mutex)
V(reader mutex)

Procedure writer

P(sr_mutex)
P(writer mutex)

<write file>

V(writer mutex)
V(sr_mutex)

Readers-Writers with reader’s
priority

Procedure reader Procedure writer

P(reader mutex)

if readers = 0 then
P(writer mutex)

readers = readers + 1

V(reader mutex)

P(sr_mutex)
P(writer mutex)

<write file>

V(writer mutex)

<read file> V(sr_mutex)

P(reader mutex)

readers = readers - 1

if readers = 0 then V(writer mutex)
V(reader mutex)

What if this
call is omitted?

Dining Philosophers Problem

Philosophers eat/think
Eating needs 2 forks

Pick one fork at a time
Possible deadlock?

How to prevent deadlock?

N
SD)N:

Ay

Does 1t solve the Dining Philosophers

Problem?
#define N 5 /* number of philosophers */
void philosopher(int i) /* i: philosopher number, from 0 to 4 */
{
while (TRUE) {
think(); /* philosopher is thinking */
take _fork(i); /* take left fork */
take fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put_fork(i); /* put left fork back on the table */
put_fork((i+1) % N); /* put right fork back on the table */

NOT a solution to the dining philosophers problem

Dining Philosophers Solution

#define N 5
#define LEFT (i+N—1)%N
#define RIGHT (i+1)%N

#define THINKING O
#define HUNGRY 1
#define EATING 2
typedef int semaphore;
int state[N];
semaphore mutex = 1;
semaphore s[N];

void philosopher(int i)
{
while (TRUE) {
think();
take _forks(i);
eat();
put_forks(i);

/* number of philosophers */

/* number of i's left neighbor */

/* number of i’s right neighbor */

/* philosopher is thinking */

/* philosopher is trying to get forks */

/* philosopher is eating */

/* semaphores are a special kind of int */
/* array to keep track of everyone’s state */
/* mutual exclusion for critical regions */

/* one semaphore per philosopher */

/* i: philosopher number, from 0 to N—-1 */

/* repeat forever */

/* philosopher is thinking */

/* acquire two forks or block */
/* yum-yum, spaghetti */

/* put both forks back on table */

How to implement take forks() and put forks()?

Dining Philosophers Solution

void take_ forks(int i) /* i: philosopher number, from O to N—-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&sli]); /* block if forks were not acquired */
}
void put__forks(i) /* i: philosopher number, from O to N—1 */
{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}
void test(i) /* i: philosopher number, from O to N—-1 */
{

if (state[i] == HUNGRY && state[LEFT] '= EATING && state[RIGHT] != EATING) {
state[i] = EATING;

up(&slil);

Dining Philosophers Solution

void take_ forks(int i) /* i: philosopher number, from O to N—-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
| down(&sJi]): | /* block if forks were not acquired */
}
void put__forks(i) /* i: philosopher number, from O to N—1 */
{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}
void test(i) /* i: philosopher number, from O to N—-1 */
{

if (state[i] == HUNGRY && state[LEFT] '= EATING && state[RIGHT] != EATING) {
state[i] = EATING;
lup(&sli]): |

Dining Philosophers Solution

void take_ forks(int i) /* i: philosopher number, from O to N—-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&sl]i]); /* block if forks were not acquired */
}
void put__forks(i) /* i: philosopher number, from O to N—1 */
{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}
void test(i) /* i: philosopher number, from O to N—-1 */
{

if (state[i] == HUNGRY && state[LEFT] '= EATING && state[RIGHT] != EATING) {
state[i] = EATING;

up(&slil);

Dining Philosophers Solution

void take_ forks(int i) /* i: philosopher number, from O to N—-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&sli]); /* block if forks were not acquired */
}
void put__forks(i) /* i: philosopher number, from O to N—1 */
{
down(&mutex); /* enter critical region */
statei] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}
void test(i) /* i: philosopher number, from O to N—-1 */
{

if (state[i] == HUNGRY && state[LEFT] '= EATING && state[RIGHT] != EATING) {
state[i] = EATING;

up(&slil);

