
Reminder

• HW1

– On Carmen

– Pseudo-code is ok

– Due Wednesday, Sep. 14

• New office hour (starting from next week):

– 2-3 pm Tuesdays

Another Solution?
• Even# takes left first

• Odd# takes right first

• Worst case scenario? 0

1

2

3

4

Semaphore: pros and cons

• Pros:

– no waste of resources due to busy waiting

– flexible resource management using an initial value > 1

• Cons:

– processes using semaphores must be aware of each

other and coordinate respective use of semaphores

– insertion of P and V calls is tricky and prone to errors

– correctness of program using semaphores can be very

hard to verify

– do not scale up well - i.e. impractical for large scale use

Group Discussion

• Linux kernel uses both spinning locks and

semaphore-based mutex locks

– Why? Any assumptions?

• In what scenarios the above assumptions would be

broken?

4

Monitors: definition

• Monitors are abstract data types for encapsulating
shared resources

• A monitor consists of:

– shared objects and local variables,

– a set of procedures

• Basic properties of the monitor

– procedures are the only operations that can be
performed on the resource and on the local variables

– only one process at a time can be active (i.e. executing
a procedure) within a monitor

Monitors: condition variables

• Condition variables are variables on which two

operations are defined, wait and signal:

– syntax: <variable>.wait and <variable>.signal

• They are used to delay and resume execution of

processes calling monitor’s procedures

• Condition variables are visible only from within

monitor procedures

Semantics of wait and signal

• A queue is associated with each condition variable

– <variable>.queue returns true if queue is not empty

• The <variable>.wait call suspends the calling process

– calling process relinquishes control of the monitor

– calling process is enqueued on the variable’s queue

• The <variable>.signal call causes one waiting process to gain
control of the monitor

– the waiting process resumes execution from where it left (i.e. right after
the wait statement)

– the calling process is enqueued on the urgent queue

• http://portal.acm.org/citation.cfm?id=355620.361161

Producer-Consumer problem

Procedure insert(x)

begin

if count = N then nonfull.wait;

pool[head] := x;

head := head + 1 mod N;

count := count + 1;

nonempty.signal

end

Procedure extract(x)

begin

if count = 0 then nonempty.wait;

x:= pool[tail] ;

tail := tail + 1 mod N;

count := count - 1;

nonfull.signal

end

circular_pool: monitor

begin

pool: array 0..N-1 of buffer;

count, head, tail: int;

nonemtpy, nonfull: condition;

count := 0

head := 0; tail := 0;

end circular_pool

Readers-Writers: base version

procedure Read;

begin

<read file>

end Read;

procedure Write;

begin

<write file>

end Write;

Readers-Writers with concurrent reader

access

• This solution works, but does not guarantee readers priority

– hint: who is allowed into the monitor when a writer exits?

procedure startRead procedure writer

begin begin

readers = readers+1; if (readers >0) then

end writer.wait;

<WRITE FILE>

writer.signal

<READ FILE> end

procedure endRead

begin

readers = readers -1;

if (readers == 0) then

writer.signal;

end

Readers-Writers solution with

readers’ priority

procedure startRead;

begin

if busy then OKtoread.wait;

readcount := readcount + 1;

OKtoread.signal;

end startRead;

procedure endRead;

begin

readcount := readcount - 1;

if readcount = 0

then OKtowrite.signal;

end endRead;

procedure startWrite;

begin

if busy OR readcount ≠ 0

then OKtowrite.wait;

busy := true;

end startWrite;

procedure endWrite;

begin

busy := false;

if OKtoread.queue

then OKtoread.signal

else OKtowrite.signal;

end endWrite;

Readers-Writers solution with

readers’ priority

procedure startRead;

begin

if busy then OKtoread.wait;

readcount := readcount + 1;

OKtoread.signal;

end startRead;

procedure endRead;

begin

readcount := readcount - 1;

if readcount = 0

then OKtowrite.signal;

end endRead;

procedure startWrite;

begin

if busy OR readcount ≠ 0

then OKtowrite.wait;

busy := true;

end startWrite;

procedure endWrite;

begin

busy := false;

if OKtoread.queue

then OKtoread.signal

else OKtowrite.signal;

end endWrite;

wait with priority

• An enhanced version of the wait operation accepts

an optional priority argument:

– syntax: <variable>.wait <parameter>

– the smaller the value of the parameter, the higher the

priority

• When the variable is signaled, the process with the

highest priority in the queue will be activated

– the base wait implementation may use a First-In-First-Out

(FIFO) discipline

Example: Smallest job first

procedure enqueueJob(file);

begin

if printerIsBusy

then OKtoprint.wait sizeof(file);

printerIsBusy := true;

buffer := file;

jobAvailable.signal

end;

procedure startPrint;

begin

if NOT printerIsBusy

then jobAvailable.wait;

printer-file := buffer;

end startPrint;

<print printer-file>

procedure endPrint;

begin

printerIsBusy := false;

OKtoprint.signal;

end endPrint;

Monitors: pros and cons

• Pros:

– encapsulation provides automatic serialization

– flexibility in blocking and unblocking process

execution within monitor procedures

• Cons

– lack of concurrency if monitor encapsulates shared

resources

– possibility of deadlock with nested monitor calls

Lessons learned

• Encapsulation of critical section of code is desirable

– provides automatic mutual exclusion

– single copy of code, single point of synchronization

– however would be nice to have some form of controlled
concurrency

• Blocking/unblocking of processes is powerful tool

– basic ingredient are named queues, enqueue and dequeue
operations

– enqueue and dequeue operations usually subject to
condition

Other existing mechanisms to handle

concurrency

• Path Expressions

– abstraction designed to describe the list of all possible legal
executions of operations on shared resource

• Communicating Sequential Processes (CSP)

– the exchange of messages as synchronization points between
sequential processes

• ADA tasks

– language constructs for the message passing

• One thing in common

– None in practical use currently (though ADA was a popular
language in 80s and 90s)

Multi-threaded programming in Java

• Java allows a program to specify multiple threads of

execution

• Provides instructions to ensure mutual exclusion,

and selective blocking/unblocking of threads

What is a thread in Java ?

• A thread is a program-counter and a stack

• All threads share the same memory space

• A running thread can

– Yield

– Sleep

– Wait for I/O or notification

– Be pre-empted

• A key feature: Synchronized methods

– Allow an exclusive lock, e.g., in an update method

Basic Syntax

• Build a thread by extending the class java.lang.Thread

• Must have a public void run() method – it is executed at the start of the thread,

and when it finishes, the thread finishes

• Synchronized statements
– Synchronized (obj) { block }

– Obtains a lock on obj before executing block, releases lock after executing
block

• Wait() gives up lock and suspends the thread

• Notifyall() resumes all threads waiting on object, resumed tasks must

reacquire lock before continuing

Producer Consumer Example

Public class ProducerConsumer {
private boolean ready ;
private Object obj ;
public ProducerConsumer() {
ready = false ;

}
public ProducerConsumer (Object o) {
obj = o ;
ready = true ;

}

Synchronized Object consume() {
while (!ready) wait() ;
ready = false ;
notifyAll() ;
return obj ;

}
Synchronized void produce (object o)
{
while (ready) wait() ;
obj = o ;
ready = true ;
notifyAll() ;

}
}

