Reminder

« HWI

— On Carmen

— Pseudo-code 1s ok
— Due Wednesday, Sep. 14

e New office hour (starting from next week):
— 2-3 pm Tuesdays

Another Solution?

e Even# takes left first
e (Odd# takes right first

e Worst case scenario?

Semaphore: pros and cons

* Pros:
— no waste of resources due to busy waiting

— flexible resource management using an initial value > 1

e Cons:

— processes using semaphores must be aware of each
other and coordinate respective use of semaphores

— 1nsertion of P and V calls is tricky and prone to errors

— correctness of program using semaphores can be very
hard to verity

— do not scale up well - 1.e. impractical for large scale use

Group Discussion

e Linux kernel uses both spinning locks and
semaphore-based mutex locks

— Why? Any assumptions?

e In what scenarios the above assumptions would be
broken?

Monitors: definition

* Monitors are abstract data types for encapsulating
shared resources

e A monitor consists of:
— shared objects and local variables,
— a set of procedures

e Basic properties of the monitor

— procedures are the only operations that can be
performed on the resource and on the local variables

— only one process at a time can be active (1.e. executing
a procedure) within a monitor

Monitors: condition variables

* Condition variables are variables on which two
operations are defined, wait and signal:
— syntax: <variable>.wait and <variable>.signal

e They are used to delay and resume execution of
processes calling monitor’s procedures

e Condition variables are visible only from within
monitor procedures

Semantics of wait and signal

* A queue 1s associated with each condition variable
— <variable>.queue returns true if queue is not empty

e The <variable>.wait call suspends the calling process
— calling process relinquishes control of the monitor
— calling process 1s enqueued on the variable’s queue

e The <variable>.signal call causes one waiting process to gain
control of the monitor

— the waiting process resumes execution from where it left (i.e. right after
the wait statement)

— the calling process is enqueued on the urgent queue
e http://portal.acm.org/citation.cfm?1d=355620.361161

Producer-Consumer problem

circular_pool: monitor

begin
pool: array 0..N-1 of buffer;
count, head, tail: int;
nonemtpy, nonfull: condition;

Procedure extract(x) Procedure insert(x)

begin begin
if count = 0 then nonempty.wait; if count = N then nonfull.wait;
x:= pool[tail] ; pool[head] := x;
tail := tail + 1 mod N; head := head + 1 mod N;
count := count - 1; count := count + 1;
nonfull.signal nonempty.signal

end end

count :=0

head := 0; tail := 0;
end circular_pool

Readers-Writers: base version

procedure Read; procedure Write;
begin begin
<read file> <write file>

end Read; end Write;

Readers-Writers with concurrent reader

ACCCSS
procedure startRead procedure writer
begin begin
readers = readers+1; if (readers >0) then
end writer.wait;
<WRITE FILE>
writer.signal
<READ FILE> end

procedure endRead

begin
readers = readers -1;
if (readers == 0) then
writer.signal;
end

e This solution works, but does not guarantee readers priority

— hint: who 1s allowed into the monitor when a writer exits?

Readers-Writers solution with
readers’ priority

procedure startRead;
begin
if busy then OKitoread.wait;
readcount := readcount + 1;
OKtoread.signal;
end startRead;

procedure endRead;
begin
readcount := readcount - 1;
if readcount =0
then OKtowrite.signalj
end endRead;

procedure startWrite;
begin
if busy OR readcount # 0
then OKtowrite.wait;
busy := true;
end startWrite;

procedure endWrite;
begin
busy := false;
if OKtoread.queue
then OKtoread.signal
else OKtowrite.signal;
end endWrite;

Readers-Writers solution with
readers’ priority

procedure startRead;
begin
if busy then OKitoread.wait;
readcount := readcount + 1;
OKtoread.signal;
end startRead;

procedure endRead;
begin
readcount := readcount - 1;
if readcount =0
then OKtowrite.signalj
end endRead;

procedure startWrite;
begin
if busy OR readcount # 0
then OKtowrite.wait;
busy := true;
end startWrite;

procedure endWrite;
begin
busy := false;
if OKtoread.queue
then OKtoread.signal
else OKtowrite.signal;
end endWrite;

wait with priority

e An enhanced version of the wait operation accepts
an optional priority argument:
— syntax: <variable>.wait <parameter>
— the smaller the value of the parameter, the higher the
priority
 When the variable 1s signaled, the process with the
highest priority in the queue will be activated

— the base wait implementation may use a First-In-First-Out
(FIFO) discipline

Example: Smallest job first

procedure startPrint;
begin
if NOT printerIsBusy
then jobAvailable.wait;
printer-file := buffer;
end startPrint;

<print printer-file>

procedure endPrint;
begin
printerIsBusy := false;
OKtoprint.signal;
end endPrint;

procedure enqueueJob(file);
begin
if printerIsBusy
then OKtoprint.wait sizeof(file);
printerlsBusy := true;
buffer := file;
jobAvailable.signal
end;

Monitors: pros and cons

* Pros:
— encapsulation provides automatic serialization

— flexibility 1in blocking and unblocking process
execution within monitor procedures

e Cons

— lack of concurrency if monitor encapsulates shared
resources

— possibility of deadlock with nested monitor calls

I_essons learned

e Encapsulation of critical section of code 1s desirable
— provides automatic mutual exclusion
— single copy of code, single point of synchronization

— however would be nice to have some form of controlled
concurrency

e Blocking/unblocking of processes 1s powerful tool

— basic ingredient are named queues, enqueue and dequeue
operations

— enqueue and dequeue operations usually subject to
condition

Other existing mechanisms to handle
concurrency

Path Expressions

— abstraction designed to describe the list of all possible legal
executions of operations on shared resource

e Communicating Sequential Processes (CSP)

— the exchange of messages as synchronization points between
sequential processes

ADA tasks

— language constructs for the message passing

One thing in common

— None 1n practical use currently (though ADA was a popular
language in 80s and 90s)

Multi-threaded programming in Java

e Java allows a program to specity multiple threads of
execution

 Provides instructions to ensure mutual exclusion,
and selective blocking/unblocking of threads

What 1s a thread 1n Java ?

A thread 1s a program-counter and a stack
All threads share the same memory space
A running thread can

— Yield

— Sleep

— Wait for I/0 or notification

— Be pre-empted
A key feature: Synchronized methods

— Allow an exclusive lock, e.g., in an update method

Basic Syntax

Build a thread by extending the class java.lang Thread
Must have a public void run() method — it is executed at the start of the thread,
and when it finishes, the thread finishes

Synchronized statements
— Synchronized (obj) { block }

— Obtains a lock on obj before executing block, releases lock after executing
block

Wait() gives up lock and suspends the thread

Notifyall() resumes all threads waiting on object, resumed tasks must
reacquire lock before continuing

Producer Consumer Example

Synchronized Object consume() {

Public class ProducerConsumer { while (Iready) wait() ;
private boolean ready ; ready = false ;
private Object obj ; notifyAll() ;
public ProducerConsumer() { return obj ;
ready = false ;]
] Synchronized void produce (object o)
public ProducerConsumer (Object o) { {
obj =0; while (ready) wait() ;
ready = true ; obj=0;
} ready = true ;

notifyAll() ;

}
}

